引言
锂离子电池以其优异的性能在实际中得到了广泛的应用。随着电池制造水平的提高, 锂电池的安全性能逐步提高, 价格也不断下降, 因此,在一些大容量储能设备中, 也越来越多地使用锂电池作为电源。
锂电池自身对充放电的要求很高, 一旦过冲很容易引起爆炸, 而过放则会造成电池的永久损坏, 因此, 使用不当极易造成人员财产损失。特别是在大容量的串联锂电池组的使用上, 必须设计和安装相关的监测、控制设备, 以杜绝上述情况的发生。另外, 由于单体电池在生产过程中所存在的不一致性, 串联使用之后的多次充放电会加剧这种不一致性, 从而极大地影响整个电池组的寿命, 因此, 电池组的均衡控制极为重要。
为此, 本文使用Intersil公司的锂电池微控模拟前端芯片ISL9208和Philips公司的小型封装系列控制芯片P87LPC768 (OTP单片机) 为主要元件,给出了一种大容量锂电池组管理系统的设计方法。该系统可实现锂电池组中单体电池的电压监测和过冲、过放保护, 以及锂电池组充放电的过冲电流保护, 同时可对锂电池组的温度进行监控以保证每个电池最大200 mA的充电平衡电流。
1 系统硬件设计
本文给出的电池组管理系统的硬件结构如图1所示。图2所示是其实际电路连接图。
图1 系统硬件结构框图。
图2 大容量锂电池组管理电路。
当系统接入外部负载或者充电器时, 使用一个外部开关将ISL9208的WKUP引脚拉到高电平,从而唤醒微控制器模拟前端ISL9208, 唤醒后的ISL9208则通过内置的3.3 V稳压器从RGO口输出3.3 V电压来驱动控制芯片P87LPC768, 这样,MCU上电后就可使整个系统开始运转。
MCU可通过I2C接口与ISL9208进行通信, 以设置好ISL9208的内部寄存器, 同时监控单体电池的电压状况, 并根据每个电池的具体参数判断电池的状态, 再通过均衡模块对单体电池进行保护, 以防止过冲和过放。
1.1 控制芯片P87LPC768
P87LPC7XX 系列是Philips 公司生产的基于80C51加速处理器结构的小型OTP单片机, 它的性能是标准80C51MCU的两倍, 并且价格低廉,易于成本控制。P87LPC768 内部集成有4KB 的OTP程序存储器和可编程的I/O端口, 4通道多路8位A/D转换器和I2C通信接口。由于ISL9208有I2C接口, 因此, 使用P87 LPC768可直接相连, 而不需要软件模拟, 故较为方便。
1.2 ISL9208
ISL9208IRZ是Intersil公司生产的多节串锂电池*流保护器件和微控制器模拟前端, 可支持5~7节串联电池组。它内部集成了过流保护电路、短路保护、内部3.3 V稳压器、电芯平衡开关、电压监测电平转换器和I2C通信接口。ISL9208的内部结构如图3所示。
图3 ISL9208的内部结构图。
(1) ISL9208的电压测量和充放电电压保护。
ISL9208通过VCELL1~7可直接测量每个电池的电压, 但是, 每个电池的电压都比稳压器的电压要高, 特别是高处的电池电压可能高于MCU所能接受电压, 所以, 在MCU测量和外部A/D转换时, 必须进行电平转换和分压。为了进入外部电路要求的电压范围, 可用电平转换器把电池电压以VSS为基准都除以2。以使典型4.2 V的锂电池在I/O口的电压变为2.1 V输出给外部。
在充电过程中, MCU将周期性地测量每个单体电池的电压, 并与初始设定值相比较, 如果大于初始设定 f=“http://www.eeworld.com.cn” target=“_blank”>MCU输出需要得到的各种电压值。
2.3 状态判断模块
经过参数测量模块所得到的测量值经过适当的转换, 再由MCU将其与初始设定值进行比较,如果超过上下限值, 则进入保护模式, 如无, 则进入均衡模式。
2.4 保护和均衡模块
当MCU判定系统进入保护模式时, MCU可通过设置ISL9208的FET Control寄存器(地址: 04H)后两位的值来实现对外部FET的控制。
如果周期性测量的各个参数都符合正常工作范围的要求, 那么则进入充放电均衡模式。若以当下电池组中电压最低的那个电池的电压为基准, 均衡范围为±50 mV (均衡的相差电压可根据实际需要通过电阻调节), 那么, 就可据此逐个排队判定其他电池是否需要均衡, 然后由MCU通过修改Cell Balance (地址: 02H) 寄存器的值来实现对CB1~7引脚电压的控制, 以开启或关闭每个电池的均衡模块。
本系统的主程序流程图如图4所示。
图4 主程序流程图。
3 测试结果
通过仿真电路对整个系统进行参数测试, 可以得到如下结果:
(1) 过充电保护电压: 4.2 V±25 mV; 过充电恢复电压: 4.0 V±25 mV。
(2) 过放电保护电压: 2.7 V±25 mV; 过放电恢复电压: 3.0 V±25 mV。
(3) 单体电池的均衡电压: 50 mV (可以根据实际需要进行修改) 具体的电流参数如表1所列。
表1 电流参数测试结果
4 结束语
本文给出了一种5~7节锂电池串联管理系统的设计方法。该方法结构简单、精度适中, 能满足大多数大容量锂电储能场合的管理需要。另外, 如果串联的锂电池数目更多, 也可以将多个ISL9208并联, 以实现更大的扩展。