元器件交易网-中发网全新升级平台
关注我们:
首页 > IC技术 > 模拟技术 > 正文

详解MOSFET的驱动技术及应用

     MOSFET作为功率开关管,已经是是开关电源领域的绝对主力器件。虽然MOSFET作为电压型驱动器件,其驱动表面上看来是非常简单,但是详细分析起来并不简单。下面我会花一点时间,一点点来解析MOSFET的驱动技术,以及在不同的应用,应该采用什么样的驱动电路。

  首先,来做一个实验,把一个MOSFET的G悬空,然后在DS上加电压,那么会出现什么情况呢?很多工程师都知道,MOS会导通甚至击穿。这是为什么呢?因为我根本没有加驱动电压,MOS怎么会导通?

  G极的电压居然有4V多,难怪MOSFET会导通,这是因为MOSFET的寄生参数在捣鬼。

  这种情况有什么危害呢?实际情况下,MOS肯定有驱动电路的么,要么导通,要么关掉。问题就出在开机,或者关机的时候,最主要是开机的时候,此时你的驱动电路还没上电。但是输入上电了,由于驱动电路没有工作,G级的电荷无法被释放,就容易导致MOS导通击穿。那么怎么解决呢?

  什么叫驱动能力,很多PWM芯片,或者专门的驱动芯片都会说驱动能力,比如384X的驱动能力为1A,其含义是什么呢?

  假如驱动是个理想脉冲源,那么其驱动能力就是无穷大,想提供多大电流就给多大。但实际中,驱动是有内阻的,假设其内阻为10欧姆,在10V电压下,最多能提供的峰值电流就是1A,通常也认为其驱动能力为1A。

  驱动电阻的作用,如果你的驱动走线很长,驱动电阻可以对走线电感和MOS结电容引起的震荡起阻尼作用。但是通常,现在的PCB走线都很紧凑,走线电感非常小。

  第二个,重要作用就是调解驱动器的驱动能力,调节开关速度。当然只能降低驱动能力,而不能提高。

  对于NMOS来说,必须是G极的电压高于S极一定电压才能导通。那么对于对S极和控制IC的地等电位的MOS来说,驱动根本没有问题,如上图。

  但是对于一些拓扑,比如BUCK(开关管放在上端),双管正激,双管反激,半桥,全桥这些拓扑的上管,就没办法直接用芯片去驱动,那么可以采用自举驱动电路。

  Buck电路,现在有太多的控制芯片集成了自举驱动,让整个设计变得很简单。但是对于,双管的,桥式的拓扑,多数芯片没有集成驱动。那样就可以外加自举驱动芯片,48V系统输入的,可以采用Intersil公司的ISL21XX,HIP21XX系列。如果是AC/DC中,电压比较高的,可以采用IR的IR21XX系列。

  自举电容主要在于其大小,该电容在充电之后,就要对MOS的结电容充电,如果驱动电路上有其他功耗器件,也是该电容供电的。所以要求该电容足够大,在提供电荷之后,电容上的电压下跌最好不要超过原先值的10%,这样才能保证驱动电压。但是也不用太大,太大的电容会导致二极管在充电的时候,冲击电流过大。

  对于二极管,由于平均电流不会太大,只要保证是快速二极管。当然,当自举电压比较低的时候,这个二极管的正向压降,尽量选小的。

  电容没什么,磁片电容,几百n就可以了。但是二极管,要超快的,而且耐压要够。电流不用太大,1A足够。

  隔离驱动。当控制和MOS处于电气隔离状态下,自举驱动就无法胜任了,那么就需要隔离驱动了。下面来讨论隔离驱动中最常用的,变压器隔离驱动。

  其实MOS只是作为开关管,需要注意的是电机是感性器件,还有电机启动时候的冲击电流。还有堵转时候的的启动电流。

  可见,在驱动突然关掉之后,C1上的能量,会引起驱动变的电感,C1以及mos的结电容之间的谐振。如果这个谐振电压足够高的话,就会触发MOS,对可靠性带来危害。

  在有源钳位,不对称半桥,以及同步整流等场合,需要一对互补的驱动,那么怎么用一路驱动来产生互补驱动,并且形成死区。

扫描左侧的二维码

科技圈最新动态一手掌握
每日砸蛋,中奖率100%