据悉,SQuAD比赛构建了一个大规模的机器阅读理解数据集(包含10万个问题),文章来源于500多篇维基百科文章。AI在阅读完数据集中的一篇短文之后,需要回答若干个基于文章内容的问题,然后与标准答案进行比对,得出精确匹配(Exact Match)和模糊匹配(F1-score)的结果。
“我们的机器阅读理解准确率超过人类”,阿里巴巴相关人员称,此次技术的重大突破源于研究团队提出的“基于分层融合注意力机制”的深度神经网络模型。该模型能够模拟人类在做阅读理解问题时的一些行为,包括结合篇章内容审题,带着问题反复阅读文章,避免阅读中遗忘而进行相关标注等。
阿里巴巴自然语言处理首席科学家司罗表示,对于解决wiki类客观知识问答,机器已经取得非常好的结果,将继续向对通用内容的“能理解会思考”的终极目标迈进。今后,研发的重点在于把这项技术真正应用在广大实际场景,让机器智能普惠生活。此外,该自然语言处理团队还支撑了阿里巴巴整个生态的技术需求,由他们研发的AliNLP自然语言技术平台每日调用1200亿+次,Alitranx翻译系统提供20个语种在线服务日调用量超过7亿+次。(韩大鹏)