元器件交易网-中发网全新升级平台
关注我们:
首页 > 安防监控 > 平安城市 > 正文

中科院在生成对抗网络研究人脸识别领域获新进展

根据“中科院之声”的消息,近日,中国科学院自动化研究所智能感知与计算研究中心在生成对抗网络基础上,提出高保真度的姿态不变模型(High Fidelity Pose Invariant Model,HF-PIM)来克服人脸识别任务中最为经典的姿态不一致问题。

实验结果表明,该方法在基准数据集上的表现的视觉效果和定量性能指标都优于目前最好的基于对抗生成网络的方法。此外,HF-PIM所支持的生成图像分辨率也在原有方法的基础上提升了一倍。该论文被神经信息处理系统大会(NIPS)所收录。

为解决先前工作中的某些限制,论文作者在实验中引入了一种能反映三维人脸模型和二维的人脸图像之间点到点的关联稠密关联场,让网络能够在二维图像的指导下学习到隐含的三维人脸信息;并设计了一种全新的纹理扭曲(warping)过程,可以有效地把人脸纹理映射到图像域,同时又可以最大程度地保持输入的语义信息;以及提出了一种对抗残差字典学习过程,从而可以在不依赖三维数据的情况下更有效地学习人脸纹理特征。

实验结果表明,该方法在基准数据集上的表现的视觉效果和定量性能指标都优于目前最好的基于对抗生成网络的方法。此外,HF-PIM所支持的生成图像分辨率也在原有方法的基础上提升了一倍。该论文被神经信息处理系统大会(NIPS)所收录。

据了解,生成对抗网络的提出是继深度神经网络之后的一大革命性新进展,已被《麻省理工科技评论》评为2018年“全球十大突破性技术”,通过两个AI系统的竞争对抗,极大化加速机器学习的过程,进而赋予机器智能过去从未企及的想像力。

声明: 本网站原创内容,如需转载,请注明出处;本网站转载内容(文章、图片、视频等资料)的版权归原网站所有。如我们转载或使用了您的文章或图片等资料的,未能及时和您沟通确认的,请第一时间通知我们,以便我们第一时间采取相应措施,避免给双方造成不必要的经济损失或其他侵权责任。如您未通知我们,我们有权利免于承担任何责任。 我们的联系邮箱:news@cecb2b.com。

买正品元器件就上天交商城!

扫描左侧的二维码

科技圈最新动态一手掌握
每日砸蛋,中奖率100%

责任编辑:蒲志琼